
AD-Aill 179 MISSION RESEARCH CORP ALEXANDRIA VA F/6 9/2
A-? FLI GHT SOFTWARE ANALYSIS.(U)
FEB 82 0 a AML ICKE , J C FOX NOOOXA-81-C-2476

UNCLASSIFIED MRC/WDCR-O NL



____ 9111112.21.00

fl1.25 '.4 1.16

MICROCOPY RESOLUIION UiST CHART

NTINA. lt tAtl ( I ANDlAR , 4 , AA



MRC/WDC-R-18

A-7 FLIGHT SOFTWARE ANALYSIS

Bruce B. Amlicke

Prepared for: Naval Research Laboratory

Washington, D.C. 20375

Contract No: NOOOI4-81-C-2476

MISSION RESEARCH CORPORATION
5503 Cherokee Avenue, Suite 201
Alexandria, Virginia 22312

(703) 750-3556 '

DINiut~
Ut~ v~ ad



SECURITY CLASSIFICATION OF THIS PAGE e(When Data Enteredl

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (dl Sulbtitle) S. TYPE OF REPORT & PERIOD COVERED

Final Report-period covered
A-7 Flight Software Analysis 8 Aug. 81 - 28 Feb. 82

6. PERFORMING ORG. REPORT NUMBER

MRC/WDC-R-018
7 AUTHOR(. 8. CONTRACT OR GRANT NUMBER(s)

Bruce B. Amlicke N00014-81-C-2476
Joseph C. Fox

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Mission Research Corporation
5503 Cherokee Avenue
Alexandria, VA 22312

I1. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Naval Research Laboratory February 1982
455 Overlook Avenue 13 NUMBJR OF PAGES

Washington, D.C. 20375 7
14 MONITORING AGENCY NAME & ADDRESS(0 different from Controlling Office) 15 SECURITY CLASS (of this report)

Unclassified
ISa. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

17 DISTRIBUTION STATEMENT (of the hsrra.t enf J'o cJk 20, if different from Report)

I SUPPLEMENTARY NOTES

19 KEY *OROS fClitinue or) reverse nide if necesary and identify by block nunmber)

Avionics Software, Information Hiding, Modules, Software Engineering, Real-
Time Systems, A-7E Avionics, Unitless Models

2o ABSTRACT Co...nti on reverse %ode If necessary and identify h block n.mbehis document describes the
development of Unitless Mathematical Models for on-board flight software. Thedevelopment is part of the NRL Software Cost Reduction Program. A subset of
the equations existing in the operational flight program were examined to
determine existing units and basic assumptions. The equations were then re-
derived in unitless form with clearly stated assumptions; this is the form
which is most useful to modular design.

DD ' 7, 1473 EDITION OF I NOV IS ,s OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (el7olen D tv. Ent rd)

1...



Copy No./4 MRC/WDC-R-018

A-7 FLIGHT SOFTWARE ANALYSIS

Bruce B. Amlicke
3oseph C. Fox

February 1982

Prepared for: Naval Research Laboratory
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Contract No: N00014-81-C-2476

MISSION RESEARCH CORPORATION
5503 Cherokee Avenue, Suite 201
Alexandria, Virginia 22312

(703) 750-3556



TABLE OF CONTENTS

Section Page

ACKNOWLEDGEMENTS - ------- -------------- I

ABSTRACT - - - ---- ------------- -- --- - - --

1 Introduction -- - - - - -------------- -- i

1.1 Background - - - - ------------- - -
1.2 Techniques for Generating Unitless Models - - 1-2
1.3 Report Organization-------------- - 1-4

2 Air Data Computer ------------------ 2-i

2.1 General --------------------- 2-i
2.2 Altitude Correction for Non-AIMS-probe and

AIMS-probe Systems --------------- 2-1
2.3 Correction to Altitude for Non-Standard

Sea Level Pressure --------------- 2-14
2.4 References ------------------- 2-25

3 Angle of Attack (AOA) ---------------- 3-1

3.1 General --------------------- 3-1
3.2 AOA Scaling and Smoothing ------------ 3-1
3.3 References ....- ........-...----------- 3-10

4 Doppler Radar Set ------------------ 4-1

4.1 General - -------------------- 4-1
4.2 Corrections to Doppler Ground Speed- ------ 4-1
4.3 References - ------------------ 4-7

BIBLIOGRAPHY -.-.- ---------------- ------------- Blb-1

Appendix

A List of Symbols - ------------------ A-I

B Real Variable Types - ---------------- B-1

C Dependencies of Constants used in Physical and
Empirical Equations- - -------------- C-I

D Notation .....- .....-..------------- D- 1



ACKNOWLEDGEMENT

The authors wish to express their appreciation to Anne Werkheiser,

David Parnas, and Paul Clements of the Naval Research Laboratory for their

continued support and interest in this project. We would also like to

recognize the support given by SandL Fryer and the rest of the staff at the

Naval Weapons Center, California, without whose help many difficult problems

could not have been solved. Recognition is also due to Glenn Cooper of the

Vought Corporation. We would like to thank Gina Casper for her Invaluable aid

In the typing and preparation of this document.

Accessicn For

NTIS GCTr&I

DTIC TA3

Pq~ui ton~

D 13 t r I ~bij t ,"n.

1 - l L~l, C.'es "-

I fst pLIi t

I e s

. ... . . ... . . : ~ * -, I DI II . .. 1 . . . .



ABSTRACT

This document describes the development of Unitless Mathematical

Models for on-board flight software. The development is part of the NRL

Software Cost Reduction Program. A subset of the equations existing In the

operational flight program were examined to determine existing units and basic

assumptions. The equations were then re-derived in unitless form with clearly

stated assumptions; this Is the form which is most useful to modular design.
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SECTION 1

INTRODUCTION

1.1 Background

The concepts of Modular Mathematics and Information Hiding are now

being applied to software for the A-7 aircraft on-board computer. Thi.,

demonstration program has been active for several years. However, to fully

apply these concepts, It has become evident that a detailed analysis of major
portions of the basic mathematics Is required. There are several reasons for

this. First, there are a number of equations within the Operational Flight

Program (OFP) that contain constants with units which are unknown or do not

conform to the basic data types. It is not evident by Inspection how these
constants were determined or on what they might depend. That Is, it is not

apparent how such constants depend on basic quantities with known physical

meanings. Second, the mathematics also depend on certain basic assumptions

not readily discernible in the form In which the equations are presented. The

nature of these assumptions must be known so that a given model may be placed

Into a specific module. Then, if a basic assumption changes, the software

modification should be confined to a single module. Finally, the equations

used in the OFP are not In a form which supports modularity. Instead, the

equations produce intermediate products which do not conform to the

established basic data types.

Modular Mathematics can be usefully defined as, "the statement of

the governing equations In terms of known assumptions using 'universal'

constants and in a unitless formulation." Modular Mathematics supports the

principles of Information Hiding by allowing the user to be concerned only

with constants of known physical meaning and not with the actual units used.

1-1
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Aside from being a necessary condition for the employment of the principle

of Information Hiding, Modular Mathematics Is useful in its own right. It

provides a cost reduction during the development phase by highlighting

assumptions Inherent in the mathematical statement of the problem. Thus, an

algorithm that optimizes the time, accuracy, and storage requirements can be

selected. A carefully compiled set of equations which are rigorously derived

and fully documented should be highly reusable. For example, a well-written

and documented subprogram will find frequent reuse to meet similar needs in

other systems. It will also serve as a model and point of departure for

Improved versions of the same subprogram or other subprograms developed to

meet related tasks. Thus, a well-supported mathematical development will

serve the user who only needs the mathematics to solve a similar problem or

needs a good example to follow in other mathematical developments, in perhaps

unrelated areas. Once a set of software Is developed, the modular form of the

mathematics can provide substantial aid during program maintenance. A change

In device or system specification can be relatively quickly traced to the

relevant equations and from there to the point requiring modification in the

derivation or change in the constants. Then the change can be made rapidly

and with little danger of any widespread, undesired effect. Substantial cost

savings can be realized by not having to reproduce the mathematics from first

principles for each change in device or system specification.

1.2 Techniques for Generating Unitless Models

A Unitless Model is not only a mathematical prescription which is

free of unknown constants or operations with Inappropriate data types; it is

the entire derivation behind that equation, including the origin of the

relevant equation and the sequence of mathematical operations that follow to

arrive at the final useful form. The trail Includes all assumptions made and

all constants identified and Introduced. In an Ideal situation, the model

could be constructed from scratch. Consideration could be given to such

issues as accuracy, machine time required, storage required, error propaga-

tion, and simplicity of form. In many cases, the mathematics already exists,

1-2
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so the origin and derivation must be determined from the form of the equation

and knowledge of the relevant processes.

The mathematical analysis Is approached by considering a detailed

statement of the problem taken from the description of the relevant module.

The module description may not contain enough detailed information to set up

entirely the mathematical problem, and the description must, therefore, be

expanded to Include a sequence of steps or operations that will accomplish

this task. The new problem statement must be examined to determine if it

still adheres to the basic tenents of the module and if It Is a clear and

concise statement. In many cases, several derivations are possible. The

selection between them may be performed at this point In the development if

there Is a clear, compelling, distinction between them. If the decision is

not made here, then the alternative forms may be carried forward for a

decision at a later point In the development, based on additional Information.

The first step is to select a starting point for the mathematical

development. It should be as general and free from restrictive assumptions as

possible. Consider a ballistics problem, for example. Rather then stating

that a force is equal to mass times acceleration, we could start with the more

general case of conservation of momentum. We would then argue that since mass

does not change, the result, F=ma, is applicable. By starting from the more

general statement, we have highlighted an assumption (i.e., that mass does not

change) which is implicit to the problem. Thus, In selecting a point of

origin, one should use the most general statement possible. Of course, this

principle can be carried to extreme. Thus, that point of origin should be

selected that Includes the full range of different assumptions encountered,

yet takes advantage of assumptions that are never expected to change.

The mathematical development should be as mathematically rigorous as

Is consistent with the manner In which the equations are used. The assump-

tions and approximations made during the development must be Justifiable and
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consistent with usage of the final form. These assumptions should be

carefully noted In the development. In the case where there is no preexisting

final form of the equation, consideration must be given to required accuracy,

storage, timing, and other parameters in selecting the end point of the

development. Accuracy considerations require that the equations derived

Include all corrections which have a measurable effect somewhere In the module

result. However, effects several orders of magnitude down from the accuracy

level of the given quantity should be ignored. Since no computer offers truly

unlimited resources of time and storage, consideration must be given to

minimizing the use of both. The traditional programming technique to reduce

computational time Is to store as many constants as possible; on the other

hand, to minimize storage, constants are typically recalculated. In the

context of Mathematical Modularity, either approach must be used with

discretion. Constants selected for storage must have a recognizable physical

meaning so that they can be available to the correct module. Further,

constants should have a dimensionality consistent with the basic data types.

Once the final equation is derived, It must be posed In a form which

is consistent with the basic data types. The basic data types are selected to

meet the needs of the problem at hand. They are the minimum set which meet

the needs of the program while not taxing the system. The final form of the

equation should include only those operations which produce one of the basic

data types as the end product.

1.3 Report Organization

This report documents the results of the Initial phase of the

project to generate Unitless Models for the A-7 flight software. The report

Is divided into chapters which parallel the division of the program Into

modules. Edch chapter is self-contained and includes lists of symbols and

references pertaining to that chapter; more chapters can be added as

I
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additional modules are analyzed. This will also allow corrections to be made

to a single chapter without the necessity of changing anything In any other

chapter. The notation and references used are consistent throughout the text

and are also listed separately in appendixes.

1
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SECTION 2

AIR DATA COMPUTER

2.1 General

The Air Data Computer (ADC) processes inputs from the Pitot-static

system and the total temperature probe to provide outputs that represent

barometric altitude, Mach number, and true airspeed.

2.2 Altitude Correction for Non-AIMS-probe and AIMS-probe systems

Background

Page ADC-13 of Reference 1 on the ADC gives two equations,

p
alt := alt + [560. *(cmindex(mi) - .2)] (2-1)

and

alt alt * {1. - cmindex(mi)**2

,r .02032 - ((7.5148E-7)*dlt)]}

+CONVERT(!system vertical velocity!). (2-2)

These equations correct the measured value of the barometric altitude for

errors associated with the location of the Pitot-statlc port.
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There are t,vo Pitot-static systems available for the A-7 aircraft.

The first has the st.itic ports along the side of the aircraft just below the

canopy rail. The second has its static ports located on the Pitot tube, which

is an L-shaped tube protruding from the side of the aircraft just aft of the

t radome. The second system is referred to as an AIMS (or in some cases an

L-probe) system, and the first as a non-AIMS system (or non-L-probe system).

Equation 2-1 provides correction on the non-AIMS-probe aircraft, while

Equation 2-2 refers to AIMS aircraft. Several quantities need to be defined.

Static Pressure - The absolute pressure of the still air surrounding the

aircraft.

Static Defect - The difference between the pressure at various places on

the aircraft skin and the free-stream pressure.

Position Error - The error in the static pressure at the static port due

to static defect.

The pressure on the aircraft skin may be either slightly lower or

higher than the free-stream pressure. The static defect at a particular

location depends on speed, angle of attack, and altitude. To obtain a sample

of static air on a moving aircraft, a hole (static port) or a series of holes

can be drilled in a plate on the side of the fuselage or on the side of a

rod-like probe (called a Pitot-static tube) extending into the free-air

stream. The location of the static port is selected by wind-tunnel tests and

by tests at numerous locations on the actual aircraft. The static port is

connected to a pressure transducer by means of tubing. The time constant of

the cavity formed by the tubing and the transducer is a function of the

viscosity of the 3ir, cavity volume, static pressure, and length and diameter

of the connecting tubing.

The time required for a change in static pressure to be sensed by

the Pitot-static system on a maneuvering aircraft introduces further errors.

An additional term must be defined.
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Pressure Lag Error = The time delay between the change in static

pressure and the change in signal from the

pressure transducer.

Thus, there is no pressure lag error in straight, level, unaccelerated flight.

Definitions of Symbols

We define the following variables and constants of a general nature:

G force of gravity at mean sea level

32.17405 ft/se&

9.80665 m/sec2

H scale height of the atmosphere 27672.24 ft.

hp barometric altitude corrected for position and pressure lag

error

h ADC-sensed barometric altitude

M n  true Mach number

* P0  standard pressure

29.92 in. Hg.

101332.27 N/ 2

* 2116.2 lb/ft2

PS static pressure

2-3
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Pt total pressure (sum of dynamic and static pressure)

q dynamic pressure (Pt - PS)

R gas constant for dry air

1716.5 ft2 /sec2-°R

287.04 m/sec2-°K

To  standard temperature

518.688 *R

288.16 °K

Vvv vertical velocity or rate of change in altitude

a standard temperature lapse rate of the atmosphere

0.00356616 °F/ft

0.0065 °C/m

true angle of attack

ratio of specific heats

1.4 for air

T time constant associated with the static pressure system

Derivation

The measured barometric altitude must be corrected for position

error and pressure lag error. The functional forms of these quantities are

determined by wind tunnel dnd flight testing. In the preceding section, it

2-4
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was noted that position error Is a function of speed, angle of attack, and

altitude, while pressure lag error is a function of the time constant of the

cavity. This can be expressed In the form,

+f (M + f (T, V) , (2-3)
P p p(n P TT'v

where fp denotes the functional form of position error and fT that of

pressure lag error. The exact nature of both of these functions is determined

by fitting curves through the experimental flight test data.

Now consider the pressure altitude only in terms of the parameters

that form the position error, fp, or

h - h (Mn ,  aT)P P

Then a Taylor series expansion of hp (Mn, aT) about Mn = Mno and

a T = aTo yields

hp(M, iT) =h (Mn 0 T 0  + (Mn - 0) ( . p(n T))P o no p(Mn a T  Mn ,a T

+ (aT - a T hp(Mn ) M, To

+ 0 (AMn 2 , Aa T2 ) . (2-4)
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We let

= h (MT)
0 0

and see that hp can be treated as a constant.

Comparing Equation 2-4 with Equation 2-1, we see that the former

will reduce to the latter if the position error Is only a function of Mach

number, and if a constant, kj, is defined as

k - )
/ n' T

0 0

The resulting equation is

h = + k I  M (2-5)
p p n1 (Mn Mn

The constants, k, and Mno , are empirically determined from flight test

data.

If a similar comparison Is made between Equation 2-2 and Equation

2-4, no formal resemblance Is noted. However, if the error In the measurement

of true altitude due to position error is assumed to be a function of dynamic

pressure (q) and Mach number (Mn) rather than speed, angle of attack, and

altitude, then a Taylor series expansion of hp (q, Mn) about q = qo and

14n1  Mno yields
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hp(q (q, M hp(qo, M ) + (q - q.) hP (q, M) Mn

+ (Mn - Mn ) ha (qp o9 M)

0

+ 0 (Aq2 , AM 2) o (2-6)

We let

hF h (q ,0 M )n 0

and see that Fp can be treated as a constant.

Equation 2-6 must be related to flight-measurable quanitites.

Consider Bernoulli's Equation,

= + M2 2 ( / -1 , (2-7)

and the defining equation for the standard atmosphere,

_ i = p(2-8)SP 0T0

2-7
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Using h- to approximate hp in Equation 2-8, and substituting for Ps in
Equation 2-7, yields

q P ( ct h)(R1 + Mn  (Y - _1 (2-9)

from which it Is seen that we may consider q -q (Mn). Thus, by the chain

rule,

3h 3h dq

am 3q dM
n n

and so Equation 2-6 can be written as

h[ + q - qo) + (Mn - M ) dq (2-1O)

h hPq n o dMn] q / q, Mn

0

Taking derivatives in Equation 2-9, we have

dq P Y  T )( +(z! M2 (7)n Mn" (2-11)

Since qo Is defined to be a reference dynamic pressure at the

point where the correction Is zero, It follows that qo = 0 at Mno 0. In

view of this, and using Equations 2-9 and 2-11, we can write Equation 2-10 as

P h0 Th T) ) ( h ) [[ +('21)M2 n] ) .

PoY  -
Mn2 JYTT/ Mn2 

,
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e

or

P- P T G 
Y

ph (2o+ ]-1 )

+ y + t - Mn  Y 1 M 2  ( a P ( - 2
2 ]n \aq O oo

ch
Since -T.. < 1 and I (i) Hn2 1 

< 1 for all reasonable values, the binomial

0
theorem may be used to generate the sums

T- 1 -P- M n R 
( 2 -1 3 )0z

1. [+( ) 2(y~) Y1 n ( )[at2] , (2-14))M n  21)

and

1= M+ • (2-15)

Actually applying Equations 2-13, 2-14, and 2-15 to Equation 2-12,

and neglecting resultant terms containing t or MI for j > 4, yields
n

h hp p [I - Mn 2  K - K2"hp (2-16)
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where

3
K1 :-_ Po y2 [

and

G
K2  - K1

RT
0

The form of Equation 2-16 now match,= that of Equation 2-2. The constants,

K1 and K2 , depend on the empirical1, determined value of the derivative.

This derivative - or more likel- the -values of K1 and K2 - are determined

by flight and wind tunnel testing. The constant K1 Is unitless, while K2
has units of length. Rewritig Equation 2-16 in a slightly different form

gives

p [ n( 1  " (2-17)

The constant, H, introduced in Equation 2-17 is the scale height of the

atmosphere,

TR
H =- .

To five decimal places, the constants are

K1 - yP [) =.02032K 2 P0[ q PV o0

2-10
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and

3 Fa h
K;= - -YP ~ p .02080.

2 Yohp

2 [aq 0, 0p)] .

The difference in the values, K1 and K2 ', is due to the fact that the

original constants were empirically determined. A simplified form of Equation

2-17 Is possible If a single value is used for both constants. This result is

h K Mn2 - (2-18)

with

K I  = .02032

The next step is to include the effects of pressure lag error. Assumption of

a linear dependence of altitude correction on vertical velocity, Vvv, gives

f = -K V + c. (2-19)
T 3 vv

Since there is no correction in level flight, the constant, c, Is zero. The

constant, K3, has dimensions of time and is the time constant of the

cavity. The non-AIMS system is not corrected for the cavity time constant,

while the AIMS-system correction becomes

hp = hp [1 Mn2(I - K; K3 VvvI (2-20)
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where K1 and K2 are defined as above and

K3 = .4375 sec.

The equations for the position and pressure lag errors are dependent on the

Pitot-static system used, the physical dimensions of that system, and the

standard atmosphere assumed.

The only remaining correction is the offset applied to the value of altitude

reported by the pressure transducer. The OFP uses an offset of -1024 feet (a

convenient power of two), while the assumed offsets for the non-AIMS-probe

system and the AIMS-probe system are -1020 feet and -1056 feet, respectively.

The final form of the equation for non-AIMS-probe should then be

h = h+ K1 (M - M ) - K . (2-21)

*p p 1 n no 2

The final form of the equation for the AIMS-probe is

h h 1 (1 K K V - K. (2-22)

The values and physical meanings of the constants appearing in Equation 2-22

are given in Table 2.1.
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Table 2.1 LOCAL CONSTANTS

Symbol Physical Meaning Dependencies Value/Units

kj instanteous rate of change altimeter 560 feet
of ratio of sensed baro-
metric altitudes and Mach
number

k2  Non-AIMS offset OFP 1020 feet

Mno Mach number offset empirical testing .2 unitiess

3 [a h]
K, = - YPo -P empirical testing .0232 unitless

2 0 aq (hp 0I

K2 3 - - G (RT)YP°[- h empirical testing .02080 unitless

I,,
K3  time constant empirical testing .4375 sec

K AIMS offset OFP 1056 feet

2
I

I
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2.3 Correction to Altitude for Non-Standard Sea Level Pressure

Background

Page ADC-13 of Reference 1 on the Air Data Computer gives the

equation,

Pl:= cfeet-dist falt + [cingh(slp - ingh(29.92))] (2-23)

*[924.87 - .00635856*alt]}

This equation corrects for a non-standard sea level pressure (i.e. a pressure

other than 29.92 inches Hg at sea level, and set into the computer by the

pilot).

There are several Important terms that are relevant to the

measurement of altitude.

Tape line altitude - The actual altitude that an hypothetical ruler or

tape would measure from mean sea level to the

aircraft. This altitude is that which would be

given by a perfect altimeter.

Geopotential altitude - The measure of the potential energy of a unit

mass at this point relative to mean sea level.

The geopotential altitude Is equal to the tape

line altitude only If the force of gravity Is not

a function of altitude. Geopotential altitude

must be considered in all pressure or density

calculations.
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Pressure Altitude The altitude given by an aneroid altimeter. It

Is a measure of the difference in pressure

between a standard datum (usually mean sea level)

and the measured static pressure converted to

distance by assuming a standard atmosphere.

The problem encountered here is that the pressure altitude furnished to the

ADC is determined using the standard atmosphere, or 29.92 inches Hg. This

pressure may or may not correspond to that encountered at mean sea level. The

required altitude is that determined using the actual pressure at mean sea

level.

Definitions of SXmbols

We define the following variables and constants of a general nature:

G acceleration due to gravity at mean sea level

32.17405 ft/sec2

9.80665 m/sec2

g(z) acceleration due to gravity, a function of altitude

hp geopotential altitude (see Figure 2.1)

H scale height of the atmosphere 27672.24 ft.

Hph pressure altitude corrected for actual pressure at sea level
(see Figure 2.1)

PO stdndard pressure (see Figure 2.1)

29.92 In Hg

101332.27 N/m2

2116.2 lb/fL
2
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*Figure 2. 1 Altitude Mecasuremenit Deofinitions
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fPs measured value of the static pressure

R gas constant for dry air

1716.5 ft2 /sec 2 -°R

287.04 m2/sec2 -°K

To  standard temperature

518.688 OR

288.16 °K

z tape line altitude, I.e., the actual distance from

mean sea level to the aircraft

a standard temperature lapse rate of the atmosphere

0.00356616 °F/ft

0.0065 °C/m

AP difference between standard pressure and actual pressure

at sea level

Derivation

To arrive at Equation 2-23, consider a Taylor series expansion about

the altitude (hp) computed using the standard pressure datum (Po), which

yields

3h

H = h + AP P + 0(Ap 2 ). (2-24)

0
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If terms of the order of AP2 and higher are neglected, then the remaining

problem Is to determine Dhp/3P o . The standard atmosphere is given by the

equation,

(i aR/G)hp Is (2-25)
p

Since the static pressure, Ps, is not known to the module, it Is necessary

to calculate It based on the pressure altitude and other known sea level

quantities. The derivation begins with the definition of the temperature

lapse rate, a, or

dT -a (2-26)

dh
p

Both sides of Equation 2-26 are multiplied by G/RT to give

G dT C (2-27)

RT dh RT
p

Geopotential altitude is defined as a measure of the gravitational potential

energy of a unit mass at a point relative to mean sea level. It can be

defined in differential form by the equation,

Gdh = g(z)dz. (2-28)
P

Equations 2-27 and 2-28 along with the chain rule are used to give

G dT dz Gc

RT dz dh RT
p

2-18

-



I

or

G dT g(z)
- - = (2-29)
RT dz RT

Next, use is made of the following assumptions: (1) the air is dry, (2) the

atmosphere is a perfect diatomic gas, and (3) the atmosphere is in

equilibrium.

The atmosphere then obeys the perfect gas law,

P = pRT, (2-30)

where p Is the density of the atmosphere.

For the case of hydrostatic equilibrium, It can be assumed that

dP - pg(z) (2-31)

dz

In view of Equation 2-31, Equation 2-29 can be written (again using the chain

rule) as

G dT dP g(z)

RT dP dz RT

Use of these results and Equation 2-31 yields

C dT (-pg(z)) = g(z)l
RT dP RT

* or

G dT 1

RcaT dP P
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Thus we have

G dT dP
. . . . . (2-32)Ra T P

Now, integration of the defining equation for the temperature lapse rate

(Equation 2-26) gives

T h

f dT -a p  dh
T P

0 0

or

T = T -ah (2-33)
0 p

Integration of Equation 2-32 from mean sea level to the altitude in question

yields

T P
G f dT dP

T 0 T P
0 0

or
orC (Pr)o

3 Xn = in (2-34)

Equation 2-33 is substituted into Equation 2-34 with the result,

(T - Ph
= - n 0 ,

Ra2T
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or

P =a (2-35)
P T

0 o

Differentiation of Equation 2-25 with respect to Po gives

ah (Ps) ( a__

00

or

ah p To 0 \ P/(a (2-36)
o PoG

Equation 2-35 is now substituted into Equation 2-36 to obtain

Ph T R ahp

o 0 I\/aP P G
0 0

or

p 0
aP P GT

o o

This equation can be written In the form,

3h 0T R
p _ o _ iR h (2-37)

3P P G P P0 0 0
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Substitution of this result into Equation 2-24 and use of AP = (msl - Pc)

gives

Hph =hp + (Pmsl -P ( To R- aR h (2-38)

If the constants are now evaluated, Equation 2-38 becomes

H hp+ (P - 29.92 in Hg) [924.87 ft/In Hg

- .006358831/in Hg (hp)] . (2-39)

Equation 2-39 now agrees with Equation 2-23 except for a small difference

In the seventh decimal place In the third constant.

The constants appearing In Equation 2-39 are not grouped In a manner that

makes their aggregate value independent of the unit system chosen. In

Equation 2-38, Pc can be factored out to give

Hp h + ms, Ah (2-40)
ph p/

Po P

where

TR

H _- and

CG

The constdnt, H, (which has dimensions of length) Is called the Scale Height

and Is defined to be the height at which the pressure of an Isothermal

atmosphere at temperature, To, decays to e-1  of its surface value. The

2-22
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non-dimensional constant, A, represents the temperature lapse rate made non-

dimensional by scale height, H, and standard surface temperature, To . These

results are

H= 1716.5 2) 
s e e 2  t

* H = (5H18.688 I e2 R scse2 2. 17405 f)

or

H = 27672.24 ft

and

ad A (00356616 OF\ (1716.5 ft2 \( 1 OR\( sec2

~ft / sec2 OR 0k OF) 32.17405 ft)

or

A = 0.1902562.

The three constants appearing in Equation 2-40 are dependent only on the

units used for the standard atmosphere. The equation Itself is not aircraft

dependent: its form will change only if the standard atmosphere Is changed or

the underlying assumptions used in the derivation are changed. The values and

physical meaning of the constants appearing in Equation 2-40 are given in

Table 2.2.

2
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Table 2.2 LOCAL CONSTANTS

Symbol Physical Meaning Dependencies Value/Units

A temperature lapse rate made standard atmosphere 0.1902562
non-dimensional by scale unitless
height and standard surface
temperature

H scale height of the standard atmosphere 27672.24 ft.
atmosphere

2
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SECTION 3

ANGLE OF ATTACK (AOA)

3.1 General

The Angle of Attack (AOA) calculations are performed by converting

the Input value of the indicated AOA to its true value and smoothing these

converted values.

3.2 AOA Scaling and Smoothing

Background

In Reference 1, the OFP listing equation for final smoothed AOA, a,

is given ds (read "=" as meaning "set equal to")

= a = (- 0.07842 + (a' + aiN), (3-1)

where a is a smoothed AOA. It is given that

s' = 0.03921[(.59815500-5 )a - (0.0241111)]
p p

arid

= O.03921[(1.598155x10-)aIN - (0.0241111)],

where rid aj are the two different indicdted AOA sample values.

As cn he seen, Equation 3-1 Is rife with numerical constants and confusing

notdit [(oH.
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The AOA system consists of a movable vane located on the left side

of the fuselage near the nose of the aircraft. The vane senses the angle

between the free stream movement of the air (the velocity vector) and an

arbitrary fuselage reference line. The AOA vane is immersed in the turbulent

flow about the aircraft and, having a much lower effective mass, responds more

quickly to inputs than the aircraft. The quick response of the vane produces

noise on top of the actual AOA signal produced by the transducer. The signal

must be filtered to remove the noise, and it must be scaled and offset to

indicate the appropriate angle.

Definition of Variables

We define the following variables and general constants:

T computation time period

a represents aIN or ap

a final smoothed AOA

a smoothed AOA

aI two input AOA values (aIN and ap) averaged over fixed

sampling period

aIN first indicated AOA, scaled and formatted, within fixed

sampling period

a ap second and final indicated AOA, scaled and formatted, within

fixed sampling period

a T true AOA

a true AOA times a constant (see a IN)
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a' true AOA times a constant (see ap)
p p

a IN indicated AOA, formatted (see aIN)

a indicated AOA, formatted (see a p

Derivation

The transfer function of the AOA system is given to be

a I (3-2)
CtI TS+

where T is a time constant that has been empirically determined. Equation 3-2

can be written as

-1
as = T a1 -a (3-3)

Since the inputs to the AOA system, aIN and ap, are sampled over a period,

T, application of a 1-transform is suitable (see Reference 2, Appendix A; also

see References 3 and 4).

Let

sT
z =e , (3-4)

where z is actually the Z-transform operator. Clearly we have

-1 -sT
z = e (3-5)
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Since an exponential can be written in the form,

P (P)J
e (3-6)

j>o

we take

z 1 1-sT, (3-7)

or

-1

S (1 - z ) (3-8)
T

Thus, Equation 3-3 can be written

a T1 (a I, (3-9)

Actually applying the z-operator in Equation 3-9 yields

a n- anST T (a -an (3-10)

or

T)T

In view of how ci is defined, we multiply both sides by (1 T/T)J -

Equation 3-11 (,in then be written
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or

a1 a +I a(313)
n n 1 - + ) TIN (3-13)

To get Equation 3-13 to include the arithmetic for indicated AOA, we note that

the OFP is supplied ADA from the AOA vane. The geometry of the ADA vane is

illustrated in Figure 3-1.

From Figure 3-1, we see that

a(electrlcal AOA) = aI+ 0 . (3-14)

The position error equation has been calculated by systems engineers to be

aT= k 1 a I + k2 * (3-15)

Substituting the value of indicated AOA from Equation 3-14, we get

aT =k 1 (a - ) + k , (3-16)

or

aT =ka - k1e + k2  (3-17)

We need Equdtion 3-17 to give AOA to the Arbitrary Datum Line (ADL) and not

*aterline - 100. Therefore, we need

aT = ka - k (3-18)

where

k = k9 k -T
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Figure 3-1. D~iagram of Angle of Attack Vane
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t The Signal Data Converter (SDC) scales and formats the DC voltage input by an

angular constant, X. Further, the AOA is scaled by an angular constant, w, to

effect a conversion to OFP angular coordinates. Thus, Equation 3-18 becomes

a Tk2 (3-19)
at - - -_

0 0

from which we have

aIN =K 1 aIN -K 2  (3-20)

and

p= K 1  - K2  (3-21)

where

klX
K1  = 1
1

and

k;
K 2

0

With the results,

I (3-22)

and

= - (+ ) a (3-23)

3-7
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Equation 3-13 may be written

a (a -ca) (a+ + i ai ) (3-24)

where

Ic: = 1 -1

OiN= + (K1 aIN K 2 )lN 2 T I

and

P 12 +2 - K1  p - K2 )

The values of the constants are given In Table 3.1.

3
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Table 3.1 LOCAL CONSTANTS

Symbol Physical Meaning Dependencies Value/Units

k, none AOA sensor and 0.785525, 0.76
test data unitless

k2  none AOA sensor and 0.4 degrees
test data

T time constant function of weapons 0.47007 sec
rate

T weapons rate function of filter 0.04 sec
constant

o angle between WL-100 and AOA vane 8 degrees
zero resistance of electrical
moment

angle between WL-100 and AOA vane 9 degrees
pot wiper arm

angle between ADL and AOA vane 3 degrees
WL- 100

scales DC voltage Input SDC 30/4096 degrees

conversion constant to units to be 360 degrees
change units to circles converted are

In degrees
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SECTION 4

DOPPLER RADAR SET

4.1 General

The Doppler Radar System is a self-contained dead-reckoning system

that obtains desired navigational information involving aircraft velocity by

means of a Doppler Radar and direction by means of a directional sensor.

4.2 Corrections to Doppler Ground Speed

Background

Page DRS-5 of Reference 2 on the Doppler Radar Set gives the

equation,

P1:= ground - (.O0025*ground*alt)/1000. (4-1)

This equation corrects the Doppler ground speed to account for

4 earth curvature and other empirically determined inaccuracies which are

functions of altitude.

Figure 4.1 illustraLes flight over curved earth. The aircraft Is

located at 0, with lift, drag, and weight vectors as Indicated. The flight

path makes an angle, y, with the horizontal, arid the aircraft moves

4-1
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along the path, OP. The line joining 0 to 0 e (the center of the earth)

sweeps along the earth's surface with a velocity, X (the ground speed). The

measured value of velocity in the aircraft frame of reference is greater than

that described at the earth's surface. Thus, the measured value of the ground

speed must be corrected for aircraft altitude.

The Doppler radar system contains other errors that are functions of

aircraft altitude or radar slant range. The aggregate value of these errors

has been determined by flight testing the aircraft at various altitudes and

comparing the measured velocities with photographically derived data. The

curve that was fitted through these data points is described by Equation 4-1.

Definition of Variables

We define the following variables and general constants:

A point of intersection of line OeO with the earth's surface

D drag vector

h height of 0 above A

L lift vector

0 e origin of the earth centered coordinates

0 origin of the aircraft frame of reference

ro  radius of the earth

V magnitude of the aircraft velocity vector in the earth centered

coordinate system

4
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W aircraft weight vector

X ground speed

y angle measured from the horizontal to the velocity vector

Derivation

The equation of motion for flight In a great circle plane Is

r
X V 0 o cy, (4-2)

r + h
0

where V is the velocity vector of the aircraft In the earth centered

coordinate system. If y = o, which Implies flight along a path parallel to

the earth's surface, Equation 4-2 becomes

= V + hr (4-3)
0)

The right hand side of Equation 4-3 can be expanded with the binomial series

to yield

X=V h

j>r

Since the quantity, h/ro, is very small, terms of second and higher powers

may safely be neglected, thus resulting in

I"
x = v - v . (4-4)

If the value for ro Is substituted into Equation 4-4 In the same way as In

Equation 4-1, the result is

X = V - KhV/1000 . (4-5)
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The value given in Table 4.1 for K Is about 1/5 of that used In Equation 4-1.

The difference can be accounted for by the fact that the value of K represents

not only that correction due to flight over a curved earth but also a number

of empirically determined correction factors. To proceed further with an

analytic derivation of the given value of K would involve a detailed analysis

of the specific Doppler radar on the A-7 aircraft.

Finally, we need to pose either Equation 4-1 or Equation 4-5 In a form which

contains constants of the correct variable type. The best form should be

X V h/r), (4-6)

with ro = 20,930,000 ft.

4
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Table 4.1 LOCAL CONSTANTS

Symbol Physical Meaning Dependencies Value/Units

K correction due to flight set of flight 4.8473xl0 "b ft- I

over curved earth plus test data used
altitudp correction factors

4
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APPENDIX A

LIST OF SYMBOLS

S acceleration due to gravity at mean sea level

32.17405 ft/sec2

9.80665 m/sec2

g(z) acceleration due to gravity as a function of altitude

hp geopotential altitude

h p ADC-sensed barometric altitude

H scale height of the atmosphere 27672.24 ft.

Rph pressure altitude corrected for actual pressure at sea level

Mn  true Mach number

PO stdndard pressure

29.92 In. Hg.

101332.27 N/m2

2116.2 lb/ft
2

Ps static pressure

Pt total pressure

q dynamic pressure, Pt -PS
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LIST OF SYMBOLS (Continued)

R the gas constant for dry air

1716.5 ft2/sec2 -°R

287.04 m/sec2 -*K

T computation time period

To  standard temperature

518.688 *R

288.16 °K

Vvv vertical velocity or rate of change in altitude

z tape line altitude, i.e., the actual distance from

mean sea level to the point

a standard temperature lapse rate of the atmosphere

0.00356616 °F/ft

0.0065 °C/m

a final smoothed Angle of Attack

smoothed Angle of Attack

a two input Angle of Attack values (aIN and ap) averaged

over fixed sampling period

A-2
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LIST OF SYMBOLS (Continued)

a IN indicated Angle of Attack, scaled and formatted

a p indicated Angle of Attack, scaled and formatted

a T  true Angle of Attack

a IN true Angle of Attack times a constant

a# true Angle of Attack times a constant
P

aIndicated Angle of Attack, formatted

aI pindicated Angle of Attack, formatted

ratio of specific heats

1.4 for air

T time constant associated with the static pressure system

AP difference between standard pressure and that existing

at sea level

A-3
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U APPENDIX B

REAL VARIABLE TYPES

Variables Units

Acceleration jZ/t
2

Angle unitiess

Angular Rate 1/t

Density m/i3

Distance I

Mach unitless

Pressure F/12

Speed or Velocity /t

Time t

B-1
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APPENDIX C

Dependencies of Constants used in Physical and Empirical Equations

Suppose that the "true" physical equation,

y = f(x,...,Xm; ki,...kn)

(C-i)

for 1i < xi < uj (i=1,...,m)

where Xl,...,xm are Independent variables and kl,...,kn are physical

constants (the actual values of which may have jeen empirically determined) Is

known. Then each k1 (i=1,...,n) can be described In terms of Its particular

physical dependencies.

On the other hand, suppose Equation (C-1) can be numerically represented, over

some regions (possibly disjointed), by the set of p empirical equations,

Yj = Fj (xi,...,xm; K1j,...,KNjj)

(C-2)

for Lij _ xi < UiJ (i=1,...,m; j=l,...,p)

* where Kij (i=I,...,Nj; J=i,...,p) are empirical constants - I.e.,

C-i
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W Yj for 1-11 < xi <i

Y2 for (J - x i

t (C-3)

Yr for Lir <xi Uir

YPfor Lip < xi Ui

Then for any rth set of constants Kir (1,...,Nr), each and every one
has the same dependencies as any other - viz., totally dependent on the
process used to develop the equation

Y= Fr (xi,..,xm; KIr-,..Knr)

(C-4)

for Lir( xj< Uir(i,.m)

These dependencies would include characteristics of measuring devices and even
the particular test data used to represent Equation (C-i).

$ (It is worth noting that if we consider Equation (C-2) for the special case of

p=1 and

N, n

K11 ki (i=1,...,n)

Ll= lj l1..m

1Ji1 = ul (i=1, ... PM)

*that this resultdnt "empirical" equation becomes identical to Equation (C-i).)
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APPENDIX D

NOTATION

While most readers are probably familiar with the mathematical

notation used in this report, what follows is a list of notational symbols

that, due to inconsistent usage in the literature, ought to be clarified here.

x = y x is identical to y

x u y x Is approximately equal to y

IL f( xi,...,Xn)) k kidentical to F(ki,...,kn) for

ni F(x...."x n) = L f(XlX n)

a x

(r\binomial coefficient n

f)sum of all f(j) such that j is an

an Integer and relation R(J) is
R(j) true.*

SO(f(x)) any quantity F(x) such that

IF(x)I < N ff(x)l over the

Interval a < x < 8, where N Is

an unspecified constant.*

*For d detailed discussion, the reader Is referred to Knuth, D.E., "The Art of

O Computer Progrdmming," Vol. 1, 2nd ed., Addison-Wesley, Reading, Mass., 1973.
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